Initial thoughts on LTE Advanced for 3GPP Release 10

Eiko Seidel, CTO
LTE World Summit, Berlin, May 19th 2009
Background Nomor Research

- Industry: IT Telecommunication
- Headquarter: Munich, Germany
- Founded: September 2004

- Worldwide business, profitable from day one
- Spin off from Munich University of Technology
 - First real-time simulations GPRS/UMTS for Siemens in 1999
 - Strategic collaboration Nokia Siemens Networks

- Business areas
 - Consulting – LTE research, prototyping, simulation, standardisation
 - Product – LTE eNB protocol stack development and emulation

- Staff
 - 20 highly qualified engineers at office in Munich, Germany
 - Development resources in Pakistan and China
Examples LTE development

Advanced Mobile Radio Emulator LTE/LTE-A Collaboration Nokia Siemens Networks

LTE eNB Protocol Stack Licensing, first customer 2008

Multi-radio access testbed First inter-RAT handover 2009
Outline

- Background 4G and ITU-R
- LTE Advanced Standardisation
- LTE Advanced Technologies
 - Carrier aggregation
 - MIMO technologies
 - Cooperative base stations
 - Relaying
What is 4G really?

LTE ?

WiMAX ?

?
ITU-R Standardization

- ITU = International Telecommunication Union
- ITU-R = ITU – Radio Communication Sector

Mission:
- ensure interference free operations of radio communication systems by means of radio regulations and regional agreements (Interference requirements, global harmonization)
- radio standardization establishes ‘Recommendations’ intended to assure the necessary performance and quality (High level performance requirements!)
- examination of frequency assignment notices submitted by administrations for inclusion in the formal coordination procedures (Frequency assignments!)
Systems beyond IMT-2000 will encompass the capabilities of previous systems. "IMT-ADVANCED" indicates that the exact data rates associated with systems beyond IMT-2000 are not yet determined.

High

Low

New Mobile Access

New Nomadic / Local Area Wireless Access

Peak useful data rate (Mbit/s)

1 10 100 1000

Recommendation ITU-R M.1645

Interconnection

Nomadic / Local Area Access Systems

Digital Broadcast Systems

Introduction LTE Advanced
ITU-R Work on 4G (IMT Advanced)

- ITU-R Foundation Activities Have Led The Way:
 - “Vision” work for IMT-Advanced began in 2000
 - “Spectrum” work for IMT-Advanced began in 2003
 - “Process” work for IMT-Advanced began in 2006

- ITU-R Future Spectrum Decisions Are Important Aspect:
 - World Radio Conference (WRC-07) took decisions in November 2007 impacting 3G and beyond 3G (that is IMT-2000, IMT-Advanced and/or collectively – “IMT”)

- ITU-R issued a Circular Letter to invite submission of candidate Radio Access Technologies. Furthermore IMT Advanced baseline requirements have been agreed by ITU-R WP5 in 2008

- ITU-R and Industry is partnering in the next steps:
 - “Technology” work for IMT-Advanced began end of 2008

- After proposal evaluation the ITU-R Technology Specification Recommendations on IMT-Advanced is expected year end 2010
Important Decisions at WRC’07

- IMT-2000 was changed to IMT (IMT = IMT-2000 and IMT-Advanced)
- In total around 400 MHz identified to IMT
- Out of this 136 MHz that was globally allocated to IMT
 - Bands; 450-470 MHz, 790-806 MHz, 2300-2400 MHz
- Additional low frequency bands for wide area coverage
 - UHF Bands 698-790 MHz, 790-806 MHz, 806-862 MHz
 - Attractive to operators for coverage extentions
- 3400-3600 MHz band allocated to mobile service in some countries in all the three Regions
 - Band will be allocated to UMTS/LTE pretty soon
 - 3GPP will start working on specification
 - Attractive for operators to improve broadband data rates with small size cells and low mobility users
- 3600-3800 MHz is identified as a possible additional or alternative frequency band, might get available from 2012
LTE Advanced Standardisation and Requirements
3GPP Schedule towards 4G

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTE Adv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Harmonized schedule between 3GPP and ITU
- LTE Release 9 = minor improvements
- LTE Release 10 = major changes for LTE Advanced
State of standardization of LTE Advanced

- Work on requirements is completed
 - LTE requirements are the baseline
 - TS36.913 Requirements for Advancements for E-UTRA
 - 3GPP inputs requirements to ITU
- New technical report was endorsed as Version 1.0.0
 - TR 36.814 Further Advancements for E-UTRA Physical Layer
 - First submission to ITU in June, final submission Sept. 2009
- Evaluation methodology agreed
- First principle technical decisions have been taken
- Radio Access Network working groups, mainly Physical Layer, continuously spend time on LTE Advanced
3GPP LTE-A Requirements

- LTE-A must support the requirements of IMT-Advanced and shall have same or better performance then LTE
- Peak data rate (peak spectrum efficiency)
 - Downlink: 1 Gbps, Uplink: 500 Mbps
- No specific targets for cell edge user throughput, average user throughput or capacity (spectrum efficiency) have been defined
- Peak spectrum efficiency
 - Downlink: 30 bps/Hz, Uplink: 15 bps/Hz
- Somewhat higher requirement for C-plane latency
- Same requirements as LTE for mobility, coverage, U-plane latency, synchronization, spectrum flexibility etc.
LTE Advanced Technology Proposals
Can we be more radio efficient?

- LTE is a well designed very advanced system
- Radio functions are very fast, fully adaptive
- Access scheme OFDMA/SC-FDMA
 - No Intracell Interference in uplink and downlink
 - Scheduler exploits channel in time and frequency
- MIMO antenna technology
 - Exploits diversity, beam forming and spatial multiplexing gain
- Shared channel gives instantaneous access to high rate
- Very high number of “always on” users
- Link performance operates close to the Shannon limit
- No major technology breakthrough foreseen yet
- LTE Advanced will be a Evolution
- Improving SINR in cellular system can be the only driver
Technology Proposals

- Bandwidth Aggregation
- MIMO Enhancements
- Cooperative Multi-site Transmission
- Relays and Repeater
Scalable bandwidth/carrier aggregation

- OFDM provides means to increase bandwidth
- Backwards compatibility must be ensured
- Scheduler must consider a mix of terminals
- Used bandwidth might not be contiguous

Challenges for 100 MHz terminal
- Potential of commercial-level RF filter
 - Effective bandwidth range
- Potential of commercial-level ADC
 - Sampling rate and quantization resolution
- Decoding complexity
 - Channel decoding and soft buffer size
Multi-carrier operation

- Resource Allocation, MIMO, Link Adaptation, HARQ etc will be performed per carrier
 - Minimum changes are required for the system
 - Improved performance (better link adaptation and HARQ)
- No changes to higher layer protocols are required
- Scheduler needs to operate across the whole band

Contiguous allocation

Non contiguous allocation
Bandwidth allocation

- Asymmetric bandwidth allocation
 - Traffic is still asymmetric between DL & UL
 - Paired spectrum might not be symmetric

- Flexible duplex distance
 - Additional signalling on the broadcast channel required
MIMO enhancements
Improved MIMO transmission

- Gain for additional diversity becomes smaller
 - Anyway not always wanted e.g. frequency selective scheduling
- Gain from spatial multiplexing only is questionable
 - limited to hotspot and indoor environments (small cells, scattered propagation environment, very low user mobility)
 - Still the only way to achieve the very high peak data rates
- Spatial multiplexing in general needs high SNR regions
- Use of beam forming combined with spatial multiplexing within different beams could be most beneficial
MIMO Enhancements for LTE-Advanced

- **Downlink MIMO transmission**
 - 4 UE receive antennas and 4x4 MIMO could become baseline
 - Downlink peak data rates achieved by the use of 8x8 MIMO (reference signals for 8 antennas required)

- **Uplink MIMO transmission**
 - 2 UE transmit antennas and 2x2 MIMO could become baseline
 - Uplink peak data rates achieved by the use of 4x4 MIMO

- Increase peak data rate, but also coverage and capacity
Coordinated multi-point transmission (CoMP)
Inter-cell interference

- Full frequency re-use is beneficial, but difficult to handle
- Slow Interference coordination is already supported

<table>
<thead>
<tr>
<th>Orthogonality</th>
<th>UMTS</th>
<th>LTE</th>
<th>LTE-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthogonal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-cell</td>
<td>DL</td>
<td>Yes, partly</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UL</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Orthogonal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-cell</td>
<td>DL</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>UL</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- Inter-cell interference is key to increase system capacity
- In case fast eNB connections are available (e.g. fiber) fast coordination is no fairy tale anymore
- Control might be centralized (RNC like) or not
Cooperative base stations

- Different technologies are possible
 - Coordination of scheduling
 - Multi-site beam forming
 - Information exchange for inter cell interference cancellation
- Different level of information sharing (no, partial and full availability)
 - Data availability
 - Channel knowledge
 - Scheduling decisions
- Might be used for cell edge users only
Coordinated Multi-site Beam Forming

- **Interference reduction** by coordinated scheduling
- Enhance the signal quality particularly of cell-edge UE
- Reduces interference caused to/by other UEs
 - Coordination considering Direction of Arrival
- No impact on radio standardization, just X2 interface
- Some added load on backhaul (forwarding of signalling)
Combined Multi-site Beam Forming

- **Signal strengthening** by joint transmission
- eNBs jointly schedule data to the UEs using different weights
- Increase of backhaul load (data forwarding), but beneficial over air
- UE specific reference signals must be used
 - Same ID from different eNBs possible
 - Reporting of a joint channel state possible
- UE might actually be unaware of network cooperation
Multi-cell MIMO

- **Increased throughput** by **spatial multiplexing** from multiple sites
- eNBs use same resource to same UEs, transmitting multiple streams
- Independent channels ⇒ less co-channel interference
 - Better cell edge performance (higher data rates possible)
 - Can be used in UL and DL
- Increased signalling overhead due to required feedback information
- UE synchronization to more than one cell and synchronized network is required
Relaying
Introduction Repeater

- Coverage problem increases for high spectrum
- Significant capacity increase can only be archived by smaller cell sizes
Introduction repeater (layer 0/1 relay)

- Used for coverage extension or to cover isolated areas
- Amplify-and-forward devices based on analog signal
 - Desired signal can not be separated
 - interference and noise is amplified as well
 - Immediate forwarding is done (within the CP length)
 - Neglectable delay, looks like multipath
 - Strong RF isolation required to minimize the leakage
 (larger device size, higher hardware and installation cost)
 - Repeater gain is at least limited by the RF isolation
- “Smart” repeaters use power control or self cancellation
- Alternatively signal can be forwarded at other frequency
Decode and Forward (layer 2 relay)

- Relay Nodes (RN) are introduced at cell edge
- Rx and Tx times require some multiplexing
 - Time Division or Frequency Division Duplex
 - Coordination/cooperation among nodes required
- Decoding, scheduling and re-encoding
- Interference co-ordination needed
- Delay of a few subframes
- Clear advantage compared to layer 1 repeater must still be seen
Self Backhauling (layer 3 relay)

- No new nodes defined, but new cells are created
- Backhaul via LTE technology; X2 protocol reused or S1
- Same or different spectrum could be used
- High spectral efficiency needed for backhaul
- Spatial coordination with beams possible
- Signalling overhead from encapsulation
- No need to change specification
- Relay as complex as Home NB
- Only solution for group mobility scenario
Cooperative Relaying

- Allows soft combining of several path
- Works simple with L1 relay that just forwards the data
- Tight coordination required if used with L2 or L3 relaying
 - Delay of S1 would be required compare to S2 and S3
Conclusion

- “LTE Advanced” = IMT Advanced = 4G
 - Data rates up to 1Gbps in stationary scenarios
 - Coverage enhancements for high frequency bands
- LTE Advanced will be a smooth evolution of LTE
 - Numerology and access technologies will be the same
- Bandwidth up to 100MHz supported
 - Contiguous and non-contiguous carrier aggregation
- New technologies are being proposed
 - Enhanced MIMO, cooperative transmission, relaying etc.
- 3GPP will contribute to ITU to standardize 4G
- Work required on PHY/MAC and network architecture
- Optimization for local area scenarios
Nomor Research GmbH
Brecherspitzstr. 8
81541 München
Germany

http://www.nomor.de
seidel@nomor.de
Tel: +49 89 9789 8000
Fax: +49 89 9789 8010